skip to main content


Search for: All records

Creators/Authors contains: "Chen, Zhenxia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Wearable personal protective equipment that is decorated with photoactive self‐cleaning materials capable of actively neutralizing biological pathogens is in high demand. Here, we developed a series of solution‐processable, crystalline porous materials capable of addressing this challenge. Textiles coated with these materials exhibit a broad range of functionalities, including spontaneous reactive oxygen species (ROS) generation upon absorption of daylight, and long‐term ROS storage in dark conditions. The ROS generation and storage abilities of these materials can be further improved through chemical engineering of the precursors without altering the three‐dimensional assembled superstructures. In comparison with traditional TiO2or C3N4self‐cleaning materials, the fluorinated molecular coating material HOF‐101‐F shows a 10‐ to 60‐fold enhancement of ROS generation and 10‐ to 20‐fold greater ROS storage ability. Our results pave the way for further developing self‐cleaning textile coatings for the rapid deactivation of highly infectious pathogenic bacteria under both daylight and light‐free conditions.

     
    more » « less
  2. Abstract

    Wearable personal protective equipment that is decorated with photoactive self‐cleaning materials capable of actively neutralizing biological pathogens is in high demand. Here, we developed a series of solution‐processable, crystalline porous materials capable of addressing this challenge. Textiles coated with these materials exhibit a broad range of functionalities, including spontaneous reactive oxygen species (ROS) generation upon absorption of daylight, and long‐term ROS storage in dark conditions. The ROS generation and storage abilities of these materials can be further improved through chemical engineering of the precursors without altering the three‐dimensional assembled superstructures. In comparison with traditional TiO2or C3N4self‐cleaning materials, the fluorinated molecular coating material HOF‐101‐F shows a 10‐ to 60‐fold enhancement of ROS generation and 10‐ to 20‐fold greater ROS storage ability. Our results pave the way for further developing self‐cleaning textile coatings for the rapid deactivation of highly infectious pathogenic bacteria under both daylight and light‐free conditions.

     
    more » « less